23.07.2021

Определить м среднюю арифметическую по способу моментов. Свойства и способы расчета средних арифметических величин. Расчет дисперсии способом моментов


При большом числе наблюдений или при большом числовом значении вариант применяют

упрощенный способ вычисления средней арифметической- способ моментов.

М = А+ iSар

где М - средняя арифметическая; А - условная средняя; i - интервал между группами вариант;

S - знак суммирования.; а- условное отклонение каждой варианты от условной средней;

р - частота встречаемости вариант; n - число наблюдений.

Пример вычисления средней арифметической по способу моментов (средней массы тела

юношей в возрасте 18 лет)

V(n в кг) Р а (V-А) а. Р
+2 +4
+1 +3
М о =62
-1 -6
-2 -8
-3 -3
п = 25 Sар = - 10кг

Этапы расчета средней по способу моментов:

2) определяем "а" - условное отклонение варианты от условной средней, для этого из каждой варианты вычитаем условную среднюю: а = V - А, (например, а = 64 - 62 = +2 и т.д.).

3) умножаем условное отклонение "а" на частоту "р" каждой варианты и получаем произведение а р;

4) находим сумму Sа. р = - 10кг

5) рассчитываем среднюю арифметическую по способу моментов:

М = А + i SаР = 62 - 1×0,4 = 61,6кг

Таким образом, можно сделать вывод, что в изучаемой нами группе юношей средняя масса тела

Средняя арифметическая сама по себе ничего не говорит о том вариационном ряде, из которого

она была вычислена. На ее типичность (достоверность) влияет однородность рассматриваемого

материала и колеблемость ряда.

Пример: даны два одинаковых по числу наблюдений вариационных ряда, в которых

представлены данные измерений окружности головы детей в возрасте от 1 года до 2-х лет

Имея одинаковое число наблюдений и одинаковые средние арифметические (М= 46 см), ряды

имеют различия в распределении внутри. Так варианты первого ряда отклоняются в целом от

средней арифметической с меньшим значением, чем варианты второго ряда, что дает

возможность предположить, что средняя арифметическая (46 см) более типична для первого

ряда, чем для второго.

В статистике для характеристики разнообразия вариационного ряда употребляют среднее

квадратическое отклонение (s)

Существует два способа расчета среднего квадратического отклонения: среднеарифметический

способ и способ моментов. При среднеарифметическом способе расчета применяют формулу:

где d истинное отклонение каждой варианты от истиной средней М. Формула используется при

небольшом числе наблюдений (п <30)

Формула для определения s по способу моментов:

где а - условное отклонение варианты от условной средней ;

Момент второй степени, а момент первой степени, возведенный в квадрат.

Теоретически и практически доказано, что если при большом числе наблюдений к средней

арифметической прибавить и отнять от нее 1s (М ± 1s), то в пределах полученных величин

будет находится 68,3% всех вариант вариационного ряда. Если к средней арифметической

прибавить и отнять 2s (М± 2s), то в пределах полученных величин будет находиться 95,5%

всех вариант. М ±3s включает в себя 99,7% всех вариант вариационного ряда.

Исходя из этого положения можно проверить типичность средней арифметической для

вариационного ряда, из которого она была вычислена. Для этого надо к средней

арифметической прибавить и от нее отнять утроенную s (М± 3s). Если в полученные пределы

данный вариационный ряд укладывается, то средняя арифметическая типична, т.е. она

выражает основную закономерность ряда и ей можно пользоваться.

Указанное положение широко применяется при выработке различных стандартов (одежды,

обуви, школьной мебели и т.д).

Степень разнообразия признака в вариационном ряду можно оценить по коэффициенту

вариации (отношение среднего квадратического отклонения к средней арифметической,

умноженное на 100%)

С v = s х 100

При С v менее 10% отмечается слабое разнообразие, при С v 10-20% - среднее, а при более 20% -

сильное разнообразие признака.

Оценка достоверности реультатов статистического исследования

Как мы уже говорили, самые надежные результаты можно получать при применении

сплошного метода т.е. при изучении генеральной совокупности.

Между тем изучение генеральной совокупности связано со значительной трудоемкостью.

Поэтому в медико-биологических исследованиях, как правило, проводятся выборочные

наблюдения. С тем, чтобы полученные при изучении выборочной совокупности данные можно

было перенести на генеральную совокупность, необходимо провести оценку достоверности

результатов статистического исследования. Выборочная совокупность может недостаточно

полно представлять генеральную совокупность, поэтому выборочным наблюдениям всегда

сопутствует ошибка репрезентативности. По размерам средней ошибки (m) можно судить,

насколько найденная выборочная средняя величина отличается от средней генеральной

совокупности. Малая ошибка указывает на близость этих показателей, большая ошибка такой

уверенности не дает.

На величину средней ошибки средней арифметической влияют следуюие два обстоятельства.

Во-первых, однородность собранного материала: чем меньше разбросанность вариант вокруг

своей средней, тем меньше ошибка репрезентативности. Во-вторых, число наблюдений:

средняя ошибка будет тем меньше, чем больше число наблюдений.

Средняя ошибка средней арифметической вычисляетсяя по следующей формуле:

Средняя ошибка (ошибка репрезентативности) для относительных величин определяется по

формуле:

где m p - средняя ошибка показателя;

р - показатель в % или в % о

q - (100 -р), (1000 -р)

n - общее число наблюдений

Из лечебного учреждения выбыло 289 больных, из них умерло 12.

Относительная величина (показатель летальности) р = (12:289)х100 = 4,1%; q=100 -р =

100-4,1 =95,9, откуда

m p = ±

Таким образом, относительная величина при повторном исследовании будет соответствовать

Доверительные границы - это максимальное и минимальное значение в пределах которого

при заданной степени вероятности безошибочного прогноза может находиться относительный

показатель или средняя величина в генеральной совокупности

Доверительные границы относительной величины в генеральной совокупности определяют по

Р ген = Р выб ± tm m

Доверительные границы средней арифметической в генеральной совокупности определяется по формуле:

М ген = М выб ± tm m

где Р ген и М ген - значения относительной и средней величины, полученные для генеральной

совокупности.

Р выб и М выб - значения относительной и средней величины, полученные для выборочной совокупности.

m р и m m - ошибка репрезентативности для средних и относительных величин.

t - критерий достоверности.

Установлено, что если t= 1, достоверность не превышает 68%; если t=2 -95%; если t=3- 99%

При медицинских и биологических исследованиях считается достаточным, если критерий

достоверности t ³ 2(достоверность 95%)

Чтобы найти критерий t при числе наблюдений £ 30 необходимо воспользоваться специальной

таблицей

С уменьшением величины ошибки репрезентативности уменьшаются доверительные границы

средних и относительных величин, т.е.уточняются результаты исследования, приближаясь к

соответствующим величинам генеральной совокупности. Если ошибка репрезентативности

большая, то получают большие доверительные границы, которые могут противоречить

логической оценке искомой величины в генеральной совокупности. Доверительные границы

зависят также от избранной исследователем степени вероятности безошибочного прогноза. При

большой степени вероятности безошибочного прогноза размах доверительных границ

Наиболее часто в характеристике вариационного ряда используют среднюю арифметическую.

Различают три вида средней арифметической: простая, взвешенная и вычисленная по способу моментов. Средняя арифметическая, которая рассчитана в вариационном ряду, где каждая варианта встречается только 1 раз называется средней арифметической простой (табл. 4) .Ее определяют по формуле:

где М – средняя арифметическая,

V – варианта изучаемого признака,

n –число наблюдений.

Если в исследуемом ряду одна или несколько вариант повторяются несколько раз, то вычисляют среднюю арифметическую взвешенную (табл. 2) , когда учитывается вес каждой варианты в зависимости от частоты ее встречаемости. Расчет такой средней проводят по формуле:

где М – средняя арифметическая взвешенная;

∑ - знак суммы;

V – варианты (числовые значения изучаемого признака);

P – частота, с которой встречается одна и та же варианта признака, т.е. сумма вариант с данным значением признака;

n – число наблюдений, т.е., сумма всех частот или общее число всех вариант (∑p).

Таблица 4

(Расчет простой средней арифметической)

ЧИСЛО СТУДЕНТОВ (p)
∑V = 691 n = 9
M = уд/мин.

Пример: при определений среднего пульса у студентов перед экзаменом следует сначала вычислить ∑ V * p, а затем среднюю величинуM = = 76,9 уд/мин.(табл. 5).

Нередко при большом числе наблюдений для вычисления средней арифметической взвешенной используют сгруппированный вариационный (или разбитый на равные интервалы) ряд. Такой вариационный ряд должен быть непрерывным, варианты, расположенные в определенном порядке (возрастания или убывания), следуют друг за другом.

Таблица 5

Определение среднего пульса у студентов-мужчин перед экзаменом

(Расчет взвешенной средней арифметической)

ПУЛЬС У СТУДЕНТОВ-МУЖЧИН (V) ЧИСЛО СТУДЕНТОВ (p) V * p
∑p = n = 26∑V * p = 2000 M = = 76,9 уд/мин.

При группировке вариационного ряда следует учитывать, что интервал выбирает исследователь, величина интервала зависит от цели и задач исследования.

Число групп в сгруппированном вариационном ряду определяют в зависимости от числа наблюдений.При числе наблюдений от 31 до 100 рекомендуется иметь 5-6 групп, от 101 до 300 - от 6 до 8 групп, от 300 до 1000 наблюдений можно использовать от 10 до 15 групп. Расчет интервала (i) проводится по формеле:i = ,

Vmax – максимальное значение варианты,

Vmin – минимальное значение варианты.

Расчет средней взвешенной в сгруппированном ряду (или интервальном ряду требует определения середины интервала, которую вычисляют как полусуммукрайных значений группы.(табл. 3). Расчет средней величины производят по формуле: M = = =176,7см.(табл. 6).

Таблица 6

(Расчет взвешенной средней арифметическойв сгруппированном ряду)

ЦЕНТРАЛЬНАЯ ВАРИАНТА ГРУППЫ (V 1), СМ. ЧИСЛО СТУДЕНТОВ (p) V 1 ∙ p
162 = 167 = 172 = 177 = 182 187
∑p = n =212 ∑ V 1 ∙ p = 37469 M = = = 176,74 см.

В случаях, когда варианты представлены большими числами (например, масса тела новорожденных в граммах) и имеется число наблюдений, выраженное сотнями или тысячами случаев, взвешенная средняя арифметическая может быть вычислена по способу моментов (табл. 7) по формуле:

гдеA – условно взятая средняя величина (чаще всего в качестве условной средней берется Мо);

∑ - знак суммы;

α – отклонение каждой варианты в интервалах от условной средней =

p – частота (число раз, с которым встречается одна и та же варианта признака).

αp – произведение отклонения (α) на частоту (p);

n – число наблюдений, т.е. сумма всех частот или общее число всех вариант (∑p).

i – величина интервала = (Vmax – максимальное значение варианты, Vmin – минимальное значение варианты).

Таким образом, средняя взвешенная вычисленная по способу моментов, составила 176,74 см., что практический совпало с расчетами средней обычным методом – 176,7 см.. Однако при вычислений средней по способу моментов используют простые цифры, вычисление менее громоздки, что значительно облегчает и ускоряет расчеты.

Средняя арифметическая (средняя взвешенная) имеет ряд свойств , которые используют в некоторых случаях для упрощения расчета средней и получения ориентировочной величины.

1. Средняя арифметическая занимает срединное положение в строго симметричном вариационном ряду (M = M 0 = M e) .

2. Средняя арифметическая имеет абстрактный характер и является обобщающей величиной, выявляющей закономерность.

3. Алгебраическая сумма отклонений всех вариант от средней равна нулю: ∑ (V - M) = 0. На этом свойстве основан расчет средней по способу моментов.

Таблица 7

Определение среднего роста студентов-мужчин 20-22 лет

(Методика расчета средней арифметической величины по способу моментов, i = 5)

РОСТ СТУДЕНТОВ-МУЖЧИН (V), СМ. ЦЕНТРАЛЬНАЯ ВАРИАНТА ГРУППЫ (V 1), СМ. ЧИСЛО СТУДЕНТОВ (p) α = a ∙ p
160-164 165-169 170-174 175-179 180-184 185-189 ∑p = n =212 -3 -2 -1 +1 +2 -12 -42 -47 +54 +36 ∑a∙p = -11
M= 177 +

Свойства средней арифметической. Расчет средней арифметической способом «моментов»

Для снижения трудоемкости расчетов используются основные свойства ср.арифм-кой:

  • 1. Если все варианты усредняемого признака увеличить/уменьшить на постоянную величину А, то средняя арифметическая соответственно увеличится/уменьшится.
  • 2. Если все варианты, определяемого признака увеличить/уменьшить в н-раз, то ср.арифм увеличится/уменьшится в н-раз.
  • 3. Если все частоты усредняемого признака увеличить/уменьшить в постоянное число раз, то ср.арифм.останется неизменной.
  • 18. Средняя гармоническая простая и взвешенная

Средняя гармоническая - используется, когда статистическая информация не содержит данных о весах по отдельным вариантам совокупности, но известны произведения значений варьирующего признака на соответствующие им веса.

Общая формула средней гармонической взвешенной имеет следующий вид:

х - величина варьирующего признака,

w - произведение значения варьирующего признака на его веса (xf)

Например, три партии товара А куплены по разным ценам (20, 25 и 40 руб.) Общая стоимость первой партии составила 2000 руб., второй партии - 5000 руб., и третьей партии - 6000 руб. Требуется определить среднюю цену единицы товара А.

Средняя цена определяется как частное от деления общей стоимости на общее количество закупленного товара. Используя среднюю гармоническую, мы получим искомый результат:


В том случае, если общие объемы явлений, т.е. произведения значений признаков на их веса равны, то применяется средняя гармоническая простая:

х - отдельные значения признака (варианты),

n - общее число вариант.

Пример. Две машины прошли один и тот же путь: одна со скоростью 60 км/час, а вторая - 80 км/час. Принимаем протяженность пути, который прошла каждая машина, за единицу. Тогда средняя скорость составит:

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности - носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Методы вычисления средней арифметической (средней арифметической простой и взвешенной, по способу моментов)

Определяем средние величины:

Мода (Мо) =11, т.к. данная варианта встречается в вариационном ряду наиболее часто (р=6).

Медиана (Ме) - порядковый номер варианты занимающей срединное положение = 23, это место в вариационном ряду занимает варианта равная 11. Средняя арифметическая (М) позволяет наиболее полно охарактеризовать средний уровень изучаемого признака. Для вычисления средней арифметической используется два способа: среднеарифметический способ и способ моментов.

Если частота встречаемости каждой варианты в вариационном ряду равна 1, то рассчитывают среднюю арифметическую простую, используя среднеарифметический способ: М = .

Если частота встречаемости вариант в вариационном ряду отличается от 1, то рассчитывают среднюю арифметическую взвешенную, по среднеарифметическому способу:

По способу моментов: А - условная средняя,

М = A + =11 += 10.4 d=V-A, A=Mo=11

Если число вариант в вариационном ряду более 30, то строится сгруппированный ряд. Построение сгруппированного ряда:

1) определение Vmin и Vmax Vmin=3, Vmax=20;

2) определение количества групп (по таблице);

3) расчет интервала между группами i = 3;

4) определение начала и конца групп;

5) определение частоты вариант каждой группы (таблица 2).

Таблица 2

Методика построения сгруппированного ряда

Длительность

лечения в днях

n=45 p=480 p=30 2 p=766

Преимущество сгруппированного вариационного ряда заключается в том, что исследователь работает не с каждой вариантой, а только с вариантами, являющимися средними для каждой группы. Это позволяет в значительной степени облегчить расчеты средней.

Величина того или иного признака неодинакова у всех членов совокупности, несмотря на ее относительную однородность. Данную особенность статистической совокупности характеризует одно из групповых свойств генеральной совокупности - разнообразие признака . Например, возьмем группу мальчиков 12 лет и измерим их рост. После проведенных расчетов средний уровень данного признака составит 153 см. Но средняя характеризует общую меру изучаемого признака. Среди мальчиков данного возраста есть мальчики, рост которых составляет 165 см или 141 см. Чем больше мальчиков будут иметь рост отличный от 153 см, тем больше будет разнообразие этого признака в статистической совокупности.

Статистика позволяет охарактеризовать данное свойство следующим критериями:

лимит (lim),

амплитуда (Amp),

среднеквадратическое отклонение (у),

коэффициент вариации (Сv).

Лимит (lim) определяется крайними значениями вариант в вариационном ряду:

lim=V min /V max

Амплитуда (Amp) - разность крайних вариант:

Amp=V max -V min

Данные величины учитывают только разнообразие крайних вариант и не позволяют получить информацию о разнообразии признака в совокупности с учетом ее внутренней структуры. Поэтому данными критериями можно пользоваться для приближенной характеристики разнообразия, особенно при малом числе наблюдений (n<30).

вариационный ряд медицинская статистика

Вариационный размах (или размах вариации) - это разница между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки рабочих составляет: в первой бригаде R=105-95=10 дет., во второй бригаде R=125-75=50 дет. (в 5 раз больше). Это говорит о том, что выработка 1-й бригады более «устойчива», но резервов роста выработки больше у второй бригады, т.к. в случае достижения всеми рабочими максимальной для этой бригады выработки, ею может быть изготовлено 3*125=375 деталей, а в 1-й бригаде только 105*3=315 деталей.
Если крайние значения признака не типичны для совокупности, то используют квартильный или децильный размахи. Квартильный размах RQ= Q3-Q1 охватывает 50% объема совокупности, децильный размах первый RD1 = D9-D1охватывает 80% данных, второй децильный размах RD2= D8-D2 – 60 %.
Недостатком показателя вариационного размаха является, но что его величина не отражает все колебания признака.
Простейшим обобщающим показателем, отражающим все колебания признака, является среднее линейное отклонение , представляющее собой среднюю арифметическую абсолютных отклонений отдельных вариант от их средней величины:

,
для сгруппированных данных
,
где хi – значение признака в дискретном ряду или середина интервала в интервальном распределении.
В вышеприведенных формулах разности в числителе взяты по модулю, иначе, согласно свойству средней арифметической, числитель всегда будет равен нулю. Поэтому среднее линейное отклонение в статистической практике применяют редко, только в тех случаях, когда суммирование показателей без учета знака имеет экономический смысл. С его помощью, например, анализируется состав работающих, рентабельность производства, оборот внешней торговли.
Дисперсия признака – это средний квадрат отклонений вариант от их средней величины:
простая дисперсия
,
взвешенная дисперсия
.
Формулу для расчета дисперсии можно упростить:

Таким образом, дисперсия равна разности средней из квадратов вариант и квадрата средней из вариант совокупности:
.
Однако, вследствие суммирования квадратов отклонений дисперсия дает искаженное представление об отклонениях, поэтому ее на основе рассчитывают среднее квадратическое отклонение , которое показывает, на сколько в среднем отклоняются конкретные варианты признака от их среднего значения. Вычисляется путем извлечения квадратного корня из дисперсии:
для несгруппированных данных
,
для вариационного ряда

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность, тем более надежной (типичной) будет средняя величина.
Среднее линейное и среднее квадратичное отклонение - именованные числа, т. е. выражаются в единицах измерения признака, идентичны по содержанию и близки по значению.
Рассчитывать абсолютные показатели вариации рекомендуется с помощью таблиц.
Таблица 3 – Расчет характеристик вариации (на примере срока данных о сменной выработке рабочих бригады)


Число рабочих,

Середина интервала,

Расчетные значения

Итого:

Среднесменная выработка рабочих:

Среднее линейное отклонение:

Дисперсия выработки:

Среднее квадратическое отклонение выработки отдельных рабочих от средней выработки:
.

1 Расчет дисперсии способом моментов

Вычисление дисперсий связано с громоздкими расчетами (особенно если средняя величина выражена большим числом с несколькими десятичными знаками). Расчеты можно упростить, если использовать упрощенную формулу и свойства дисперсии.
Дисперсия обладает следующими свойствами:

  1. если все значения признака уменьшить или увеличить на одну и ту же величину А, то дисперсия от этого не уменьшится:

,

, то или
Используя свойства дисперсии и сначала уменьшив все варианты совокупности на величину А, а затем разделив на величину интервала h, получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:
,
где – дисперсия, исчисленная по способу моментов;
h – величина интервала вариационного ряда;
– новые (преобразованные) значения вариант;
А– постоянная величина, в качестве которой используют середину интервала, обладающего наибольшей частотой; либо вариант, имеющий наибольшую частоту;
– квадрат момента первого порядка;
– момент второго порядка.
Выполним расчет дисперсии способом моментов на основе данных о сменной выработке рабочих бригады.
Таблица 4 – Расчет дисперсии по способу моментов


Группы рабочих по выработке, шт.

Число рабочих,

Середина интервала,

Расчетные значения

Порядок расчета:


  1. рассчитываем дисперсию:

2 Расчет дисперсии альтернативного признака

Среди признаков, изучаемых статистикой, есть и такие, которым свойственны лишь два взаимно исключающих значения. Это альтернативные признаки. Им придается соответственно два количественных значения: варианты 1 и 0. Частостью варианты 1, которая обозначается p, является доля единиц, обладающих данным признаком. Разность 1-р=q является частостью варианты 0. Таким образом,


хi

Средняя арифметическая альтернативного признака
, т. к. p+q=1.

Дисперсия альтернативного признака
, т.к. 1-р=q
Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.
Если значения 1 и 0 встречаются одинаково часто, т. е. p=q, дисперсия достигает своего максимума pq=0,25.
Дисперсия альтернативного признака используется в выборочных обследованиях, например, качества продукции.

3 Межгрупповая дисперсия. Правило сложения дисперсий

Дисперсия, в отличие от других характеристик вариации, является аддитивной величиной. То есть в совокупности, которая разделена на группы по факторному признаку х, дисперсия результативного признака y может быть разложена на дисперсию в каждой группе (внутригрупповую) и дисперсию между группами (межгрупповую). Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучение вариации в каждой группе, а также между этими группами.

Общая дисперсия измеряет вариацию признака у по всей совокупности под влиянием всех факторов, вызвавших эту вариацию (отклонения). Она равна среднему квадрату отклонений отдельных значений признака у от общей средней и может быть вычислена как простая или взвешенная дисперсия.
Межгрупповая дисперсия характеризует вариацию результативного признака у , вызванную влиянием признака-фактора х , положенного в основу группировки. Она характеризует вариацию групповых средних и равна среднему квадрату отклонений групповых средних от общей средней :
,
где – средняя арифметическая i-той группы;
– численность единиц в i-той группе (частота i-той группы);
– общая средняя совокупности.
Внутригрупповая дисперсия отражает случайную вариацию, т. е. ту часть вариации, которая вызвана влиянием неучтенных факторов и не зависит от признака-фактора, положенного в основу группировки. Она характеризует вариацию индивидуальных значений относительно групповых средних, равна среднему квадрату отклонений отдельных значений признака у внутри группы от средней арифметической этой группы (групповой средней) и вычисляется как простая или взвешенная дисперсия для каждой группы:
или ,
где – число единиц в группе.
На основании внутригрупповых дисперсий по каждой группе можно определить общую среднюю из внутригрупповых дисперсий :
.
Взаимосвязь между тремя дисперсиями получила название правила сложения дисперсий , согласно которому общая дисперсия равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий:

Пример . При изучении влияния тарифного разряда (квалификации) рабочих на уровень производительности их труда получены следующие данные.
Таблица 5 – Распределение рабочих по среднечасовой выработке.



п/п

Рабочие 4-го разряда

Рабочие 5-го разряда

Выработка
рабочего, шт.,

Выработка
рабочего, шт.,

1
2
3
4
5
6

7
9
9
10
12
13

7-10=-3
9-10=-1
-1
0
2
3

9
1
1
0
4
9

1
2
3
4

14
14
15
17

14-15=-1
-1
0
2

1
1
0
4

В данном примере рабочие разделены на две группы по факторному признаку х – квалификации, которая характеризуется их разрядом. Результативный признак – выработка – варьируется как под его влиянием (межгрупповая вариация), так и за счет других случайных факторов (внутригрупповая вариация). Задача заключается в измерении этих вариаций с помощью трех дисперсий: общей, межгрупповой и внутригрупповой. Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х . Остальная часть общей вариации у вызвана изменением прочих факторов.
В примере эмпирический коэффициент детерминации равен:
или 66,7 %,
Это означает, что на 66,7% вариация производительности труда рабочих обусловлена различиями в квалификации, а на 33,3% – влиянием прочих факторов.
Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:

Эмпирическое корреляционное отношение , как и , может принимать значения от 0 до 1.
Если связь отсутствует, то =0. В этом случае =0, то есть групповые средние равны между собой и межгрупповой вариации нет. Значит группировочный признак – фактор не влияет на образование общей вариации.
Если связь функциональная, то =1. В этом случае дисперсия групповых средних равна общей дисперсии (), то есть внутригрупповой вариации нет. Это означает, что группировочный признак полностью определяет вариацию изучаемого результативного признака.
Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.

В примере , что свидетельствует о тесной связи между производительностью труда рабочих и их квалификацией.


© 2024
polyester.ru - Журнал для девушек и женщин