16.12.2020

Новые высокоскоростные поезда на магнитном поле. Всё что делает нашу жизнь проще. Синкансэн - высокоскоростные железные дороги


Больше 200 лет минуло с той поры, когда были изобретены паровозы. С тех пор железнодорожный транспорт стал самым востребованным для перевозки пассажиров и грузов. Однако ученые активно трудились над усовершенствованием данного способа перемещения. В результате был создан маглев или поезд на магнитных подушках.

Идея появилась в начале двадцатого века. Но реализовать ее в то время и в тех условиях не удалось. И лишь в конце 60-х – начале 70-х годов в ФРГ собрали магнитную трассу, где и запустили транспортное средство нового поколения. Тогда он двигался со скоростью максимум 90 км/ч и мог вместить только 4 пассажира. В 1979 году поезд на магнитных подушках модернизировали, и он смог перевезти 68 пассажиров, проезжая 75 километров в час. А в то же время в Японии сконструировали иную вариацию маглева. Он разгонялся до 517 км/ч.

Сегодня стремительность поездов на магнитных подушках может составить реальную конкуренцию самолетам. Магнитоплан мог бы серьезно соперничать с воздушными авиаперевозчиками. Единственное препятствие в том, что скользить по обычным железнодорожным путям маглевы не способны. Они требуют особых магистралей. Кроме того, считается, что необходимое поездам на воздушной подушке магнитное поле может оказать неблагоприятное воздействие на здоровее человека.

Магнитоплан не движется по рельсам, он летит в прямом смысле этого слова. На небольшой высоте (15 см) от поверхности магнитной трассы. Поднимается он над треком за счет действия электромагнитов. Это объясняет и невероятную скорость.

Полотно для маглева выглядит как череда бетонных плит. Магниты расположены под этой поверхностью. Они искусственно создают магнитное поле, по которому «едет» поезд. Во время движения нет трения, поэтому для торможения используется аэродинамическое сопротивление.

Если на простом языке объяснять принцип действия, то получится так. Когда пару магнитов приближают друг к другу одинаковыми полюсами, они как бы отталкиваются один от другого. Получается магнитная подушка. А при приближении противоположных полюсов магниты притягиваются, и поезд останавливается. Такой элементарный принцип и положен в основу работы магнитоплана, который движется по воздуху на небольшой высоте.

Сегодня применяются 3 технологии подвеса маглевов.

1. Электродинамическая подвеска, EDS.

Иначе это называется на сверхпроводящих магнитах, то есть на вариациях с обмоткой из сверхпроводящего материала. Такая обмотка обладает нулевым омическим сопротивлением. И если она замкнута накоротко, то электрический ток в ней сохраняется бесконечно долго.

2. Электромагнитная подвеска, EMS (или на электромагнитах).

3. На постоянных магнитах. Сегодня это наименее затратная технология. Процесс передвижения обеспечивается линейным двигателем, то есть электродвигателем, где один элемент магнитной системы разомкнут и имеет развёрнутую обмотку, создающую бегущее магнитное поле, а второй сделан в виде направляющей, отвечающей за линейное перемещение подвижной части двигателя.

Многие задумываются: безопасный ли это поезд, он не упадет? Разумеется, не упадет. Нельзя сказать, что маглев на дороге ничего не удерживает. Он опирается на трек посредством особенных “клешней”, расположенных снизу поезда, в которых и поставлены электромагниты, поднимающие поезд в воздух. Там же расположены и те магниты, которые удерживают магнитоплан на треке.

Те, кто прокатился на маглеве, утверждают, что ничего вдохновляющего не ощутили. Поезд идет настолько тихо, что умопомрачительная скорость не чувствуется. Объекты за окном пролетают быстро, но расположены очень далеко от трека. Разгоняется магнитоплан плавно, так что перегрузок тоже не ощущается. Интересен и необычен только момент, когда поезд поднимается.

Итак, основные преимущества маглева:

  • максимально возможная скорость движения, которая достигается на наземном (неспортивном) транспорте,
  • требуется небольшое количество электроэнергии,
  • из-за отсутствия трения малозатратны в обслуживании,
  • тихое передвижение.

Недостатки:

  • необходимость больших финансовых затрат при строительстве и обслуживании трека,
  • электромагнитное поле способно нанести вред здоровью тем, кто работает на этих линиях и живет в окрестных районах,
  • для постоянного контроля расстояния между поездом и треком необходимы быстродействующие системы управления и сверхпрочные приборы,
  • требуются сложная схема путей и дорожная инфраструктура.

Поезда на магнитной подушке, маглевы – самый быстрый вид наземного общественного транспорта. И хотя в эксплуатацию пока введено всего три небольших трека, исследования и испытания прототипов магнитных поездов проходят в разных странах. Как развивалась технология магнитной левитации и что ждет ее в ближайшем будущем вы узнаете из этой статьи.

Первые страницы истории маглев были заполнены рядами патентов, полученных в начале XX века в разных странах. Еще в 1902 году патентом на конструкцию поезда, оснащенного линейным двигателем, отметился немецкий изобретатель Альфреда Зейден. А уже спустя четыре года Франклин Скотт Смит разработал еще один ранний прототип поезда на электромагнитном подвесе. Немного позже, в период с 1937 года по 1941 год, еще нескольких патентов относящихся к поездам, оснащенным линейными электродвигателями, получил немецкий инженер Герман Кемпер. К слову, подвижные составы Московской монорельсовой транспортной системы, построенной в 2004 г., используют для движения асинхронные линейные двигатели – это первый в мире монорельс с линейным двигателем.

Поезд Московской монорельсовой системы возле станции Телецентр

В конце 1940-х годов исследователи перешли от слова к делу. Британскому инженеру Эрику Лэйзвейту, которого многие называют «отцом маглевов», удалось разработать первый рабочий полноразмерный прототип линейного асинхронного двигателя. Позже, в 1960-х годах, он присоединился к разработке скоростного поезда Tracked Hovercraft. К сожалению, в 1973 году проект закрыли из-за нехватки средств.


В 1979 году появился первый в мире прототип поезда на магнитной подушке, лицензированный для предоставления услуг по перевозке пассажиров – Transrapid 05. Испытательный трек длиной 908 м был построен в Гамбурге и представлен в ходе выставки IVA 79. Интерес к проекту оказался настолько велик, что Transrapid 05 удалось успешно проработать еще три месяца после окончания выставки и перевезти в общей сложности около 50 тыс. пассажиров. Максимальная скорость этого поезда составляла 75 км/ч.


А первый коммерческий магнитоплан появился в 1984 году в Бирмингеме, Англия. Железнодорожная линия на магнитном подвесе соединяла терминал международного аэропорта Бирмингема и расположенную рядом железнодорожную станцию. Она успешно проработала с 1984 по 1995 год. Протяженность линии составляла всего 600 м, а высота, на которую состав с линейным асинхронным двигателем поднимался над полотном дороги – 15 миллиметров. В 2003 году на ее месте была построена система пассажирских перевозок AirRail Link на базе технологии Cable Liner.

В 1980-х годах к разработке и реализации проектов по созданию высокоскоростных поездов на магнитной подушке приступили не только в Англии и Германии, но и в Японии, Корее, Китае и США.

Как это работает

О базовых свойствах магнитов мы знаем еще с уроков физики за 6 класс. Если поднести северный полюс постоянного магнита к северному полюсу другого магнита они будут отталкиваться. Если один из магнитов перевернуть, соединив разные полюса – притягиваться. Это простой принцип заложен в поездах-маглевах, которые скользят по воздуху над рельсом на незначительном расстоянии.

В основе технологии магнитного подвеса лежат три основных подсистемы: левитации, стабилизации и ускорения. В то же время на данный момент существует две основных технологии магнитного подвеса и одна экспериментальная, доказанная лишь на бумаге.

Поезда, построенные на базе технологии электромагнитного подвеса (EMS) для левитации используют электромагнитное поле, сила которого изменяется по времени. При этом практическая реализация данной системы очень похожа на работу обычного железнодорожного транспорта. Здесь применяется Т-образное рельсовое полотно, выполненное из проводника (в основном металла), но поезд вместо колесных пар использует систему электромагнитов – опорных и направляющих. Опорные и направляющие магниты при этом расположены параллельно к ферромагнитным статорам, размещенным на краях Т-образного пути. Главный недостаток технологии EMS – расстояние между опорным магнитом и статором, которое составляет 15 миллиметров и должно контролироваться и корректироваться специальными автоматизированными системами в зависимости от множества факторов, включая непостоянную природу электромагнитного взаимодействия. К слову, работает система левитации благодаря батареям, установленным на борту поезда, которые подзаряжаются линейными генераторами, встроенными в опорные магниты. Таким образом, в случае остановки поезд сможет достаточно долго левитировать на батареях. На базе технологии EMS построены поезда Transrapid и, в частности, шанхайский маглев.

Поезда на базе технологии EMS приводятся в движение и осуществляют торможение с помощью синхронного линейного двигателя низкого ускорения, представленного опорными магнитами и полотном, над которым парит магнитоплан. По большому счету, двигательная система, встроенная в полотно, представляет собой обычный статор (неподвижная часть линейного электродвигателя), развернутый вдоль нижней части полотна, а опорные электромагниты, в свою очередь, работают в качестве якоря электродвигателя. Таким образом, вместо получения крутящего момента, переменный ток в катушках генерирует магнитное поле возбуждающихся волн, которое перемещает состав бесконтактно. Изменение силы и частоты переменного тока позволяет регулировать тягу и скорость состава. При этом чтобы замедлить ход, нужно всего лишь изменить направление магнитного поля.

В случае применения технологии электродинамического подвеса (EDS) левитация осуществляется при взаимодействии магнитного поля в полотне и поля, создаваемого сверхпроводящими магнитами на борту состава. На базе технологии EDS построены японские поезда JR–Maglev. В отличие от технологии EMS, в которой применены обычные электромагниты и катушки проводят электричество только в тот момент, когда подается питание, сверхпроводящие электромагниты могут проводить электричество даже после того, как источник питания был отключен, например, в случае отключения электроэнергии. Охлаждая катушки в системе EDS можно сэкономить достаточно много энергии. Тем не менее, криогенная система охлаждения, используемая для поддержания более низких температур в катушках, может оказаться достаточно дорогой.

Главным преимуществом системы EDS является высокая стабильность – при незначительном сокращении расстоянии между полотном и магнитами возникает сила отталкивания, которая возвращает магниты в первоначальное положение, в то же время увеличение расстояния снижает силу отталкивания и повышает силу притяжения, что опять же ведет к стабилизации системы. В этом случае никакой электроники для контроля и корректировки расстояния между поездом и полотном не требуется.

Правда, без недостатков здесь также не обошлось – достаточная для левитации состава сила возникает только на больших скоростях. По этой причине поезд на системе EDS должен быть оснащен колесами, которые смогут обеспечивать движение при низких скоростях (до 100 км/ч). Соответственные изменения также должны быть внесены по всей длине полотна, так как поезд может остановиться в любом месте в связи с техническими неисправностями.

Еще одним недостатком EDS является то, что при низких скоростях в передней и задней частях отталкивающих магнитов в полотне возникает сила трения, которая действует против них. Это одна из причин, по которой в JR–Maglev отказались от полностью отталкивающей системы и посмотрели в сторону системы боковой левитации.

Стоит также отметить, что сильные магнитные поля в секции для пассажиров порождают необходимость установки магнитной защиты. Без экранирования путешествие в таком вагоне для пассажиров с электронным стимулятором сердца или магнитными носителями информации (HDD и кредитные карточки), противопоказано.

Подсистема ускорения в поездах на базе технологии EDS работает точно также, как и в составах на базе технологии EMS за исключением того, что после изменения полярности статоры здесь на мгновение останавливаются.

Третьей, наиболее близкой к реализации технологией, существующей пока только на бумаге, является вариант EDS с постоянными магнитами Inductrack, для активации которых не требуется энергия. До недавнего времени исследователи считали, что постоянные магниты не обладают достаточной для левитации поезда силой. Однако эту проблему удалось решить путем размещения магнитов в так называемый «массив Хальбаха». Магниты при этом расположены таким образом, что магнитное поле возникает над массивом, а не под ним, и способны поддерживать левитацию поезда на очень низких скоростях – около 5 км/ч. Правда, стоимость таких массивов из постоянных магнитов очень высока, поэтому пока и не существует ни одного коммерческого проекта данного рода.

Книга рекордов Гиннесса

На данный момент первою строчку в списке самых быстрых поездов на магнитной подушке занимает японское решение JR-Maglev MLX01, которому 2 декабря 2003 года на испытательной трассе в Яманаси удалось развить рекордную скорость – 581 км/ч. Стоит отметить, что JR-Maglev MLX01 принадлежит еще несколько рекордов, установленных в период с 1997 по 1999 год – 531, 550, 552 км/ч.

Если взглянуть на ближайших конкурентов, то среди них стоит отметить шанхайский маглев Transrapid SMT, построенный в Германии, которому удалось в ходе испытаний в 2003 году развить скорость 501 км/ч и его прародителя – Transrapid 07, преодолевшего рубеж в 436 км/ч еще в 1988 году.

Практическая реализация

Поезд на магнитной подушке Linimo, эксплуатация которого началась в марте 2005 года, был разработан компанией Chubu HSST и до сих пор используется в Японии. Он курсирует между двумя городами префектуры Айти. Протяженность полотна, над которым парит маглев составляет около 9 км (9 станций). При этом максимальная скорость Linimo равна 100 км/ч. Это не помешало ему только в течение первых трех месяцев с момента запуска перевезти более 10 млн пассажиров.

Более известным является шанхайский маглев, созданый немецкой компанией Transrapid и введенный в эксплуатацию 1 января 2004 года. Эта железнодорожная линия на магнитном подвесе соединяет станцию шанхайского метро Лунъян Лу с международным аэропортом Пудун. Общее расстояние составляет 30 км, поезд преодолевает его приблизительно за 7,5 мин, разгоняясь до скорости 431 км/ч.

Еще одна железнодорожная линия на магнитном подвесе успешно эксплуатируется в городе Тэджон, Южная Корея. UTM-02 стал доступен пассажирам 21 апреля 2008 года, а на его разработку и создание ушло 14 лет. Железнодорожная линия на магнитном подвесе соединяет Национальный музей науки и выставочный парк, расстояние между которыми всего лишь 1 км.

Среди поездов на магнитной подушке, эксплуатация которых начнется в ближайшем будущем, стоит отметить Maglev L0 в Японии, его испытания были возобновлены совсем недавно. Ожидается, что к 2027 году он будет курсировать по маршруту Токио – Нагоя.

Очень дорогая игрушка

Не так давно популярные журналы называли поезда на магнитной подушке революционным транспортом, а о запуске новых проектов подобных систем с завидной регулярностью сообщали как частные компании, так и органы власти из разных стран мира. Однако большинство из этих грандиозных проектов были закрыты еще на начальных стадиях, а некоторые железнодорожные линии на магнитном подвесе хоть и сумели недолго послужить на благо населения, позже были демонтированы.

Главная причина неудач в том, что поезда на магнитной подвеске чрезвычайно дороги. Они требуют специально построенной под них с нуля инфраструктуры, которая, как правило, и является самой расходной статьей в бюджете проекта. К примеру, шанхайский маглев обошелся Китаю в $1,3 млрд или $43,6 млн за 1 км двустороннего полотна (включая затраты на создание поездов и постройку станций). Конкурировать с авиакомпаниями поезда на магнитной подушке могут лишь на более длинных маршрутах. Но опять же, в мире достаточно мало мест с большим пассажиропотоком, необходимым для того чтобы железнодорожная линия на магнитном подвесе окупилась.

Что дальше?

На данный момент будущее поездов на магнитной подвеске выглядит туманно в большей степени из-за запредельной дороговизны подобных проектов и длительного периода окупаемости. В то же время множество стран продолжают инвестировать огромные средства в проекты по созданию высокоскоростных железнодорожных магистралей (ВСМ). Не так давно в Японии были возобновлены скоростные испытания поезда на магнитной подушке Maglev L0, .

Японское правительство также надеется заинтересовать собственными поездами на магнитной подушке США. Недавно представители компании The Northeast Maglev, которые планируют соединить с помощью железнодорожной линии на магнитном подвесе Вашингтон и Нью-Йорк, совершили официальный визит в Японию. Возможно поезда на магнитной подвеске получат большее распространение в странах с менее эффективной сетью ВСМ. К примеру, в США и Великобритании, но их стоимость по-прежнему останется высока.

Есть еще один сценарий развития событий. Как известно, одним из путей к увеличению эффективности поездов на магнитной подушке является применение сверхпроводников, которые при охлаждении до близких к абсолютному нулю температур полностью теряют электрическое сопротивление. Однако держать огромные магниты в баках с чрезвычайно холодными жидкостями очень дорого, так как чтобы удерживать нужную температуру, нужны громадные «холодильники», что еще больше повышает стоимость.

Но никто не исключает вероятности, что в ближайшем будущем светилам физики удастся создать недорогое вещество, сохраняющие сверхпроводящие свойства даже при комнатной температуре. При достижении сверхпроводимости при высоких температурах мощные магнитные поля, способные удерживать на весу машины и поезда, станут настолько доступными, что даже «летающие автомобили» окажутся экономически выгодными. Так что ждем новостей из лабораторий.

Сторонникам широкой колеи удалось воплотить свои проекты в жизнь на железной дороге, проложенной японцами в начале 30-х гг. в колонизированной Южной Маньчжурии. В 1934 г. между городами Далянь и Чанчунь (700 км) был запущен легендарный «Азия-Экспресс», показательный символ японской империалистической мощи того времени. Способный развивать скорость более 130 км/ч, он намного превосходил железнодорожную систему Китая того времени, и даже был намного быстрее самого быстрого экспресса в самой Японии. Да и в мировых масштабах «Азия-Экспресс» имела внушительные характеристики. Например, первые в мире кондиционированные вагоны были оборудованы именно в ней. Вагон-ресторан был оборудован холодильниками, также имелся особый вагон - обзорная площадка с окнами по всему периметру, обставленный кожаными креслами и книжными полками.

Вероятно, этот пример стал окончательным аргументом в пользу широкой колеи и дал начало первым проектам скоростной железной дороги в Японии. В 1940-м году правительство Японии утвердило невероятный по своим масштабам проект. Уже тогда проект предполагал создание поезда, способного развивать скорость до 200 км/ч, но японское правительство не собиралась ограничиваться прокладкой линий лишь на территории Японии. Предполагалось проложить подводный тоннель до Корейского полуострова и протянуть пути аж до Пекина. Строительство уже было частично начато, однако начавшаяся вскоре война и последовавшее ухудшение военных и политических позиций Японии положило конец имперским амбициям. В 1943 г. проект был свернут, тот же год стал последним и для «Азии-Экспресс». Тем не менее, некоторые участки линий «Синкансен», эксплуатируемой сегодня, были построены еще в довоенные годы.
О строительстве «Синкансена» снова заговорили через 10 лет после войны. Бурный экономический рост создал большой спрос на грузовые и пассажирские перевозки по стране. Однако, идея возродить проект оказалась совершенна непопулярна и подверглась резкой критике. На тот момент было сильно мнение, что авто- и авиатранспорт вытеснят железнодорожный в скором времени, как это случилось, например, в США и некоторых европейских странах. Проект снова оказался под угрозой срыва.

В 1958 г. между Токио и Осакой, по пока еще узкой колее, был запущен прямой предок «Синкансена» - бизнес-экспресс «Кодама». При максимальной скорости в 110 км/ч он преодолевал расстояние между городами за 6,5 часов, сделав возможным однодневные командировки. В Японии, где культура ведения бизнеса базируется на личных встречах, это было очень удобным решением. Тем не менее, прослужил он совсем недолго. Невероятная популярность «Кодамы» не оставила ни у кого сомнений в необходимости в скоростных линиях, и менее чем через год правительство окончательно утвердило проект строительства «Синкансена».

Высокоскоростная сеть железных дорог в Японии - именно то, что я мечтал увидеть своими глазами. Эти поезда-пули выстреливают с платформ японских вокзалов каждые три минуты. Их средняя скорость на маршруте 270 км/час, о максимальной и упоминать не стоит - слишком часто бьются очередные рекорды.

Под катом совсем небольшой пост про главного конкурента авиаперелетам и самый пунктуальный пассажирский транспорт на планете - «Синкансэн».

Долгожданное знакомство с «японским чудом» состоялось на вокзале Одавара, откуда проложается наше путешествие по Японии. Хикари №503 всего за полтора часа обещал доставить нас в Киото.
1.

«Синкансэн» (Shinkansen) в буквальном переводе с японского — «новая магистральная линия» — это общее название высокоскоростных железных дорог, соединяющих важнейшие города Японии. «Новой линией» эта дорога была названа потому, что японские строители впервые при прокладке «Синкансэн» отошли от практики узкоколеек — стандартная ширина колеи стала 1435 мм. До этого вся японская железнодорожная сеть была узкоколейной (ширина колеи — 1067 мм).

2.

Первый участок «Синкансэн» Токио- Осака («Токайдо-синкансен») длиной 515 км был открыт в 1964 г., накануне открытия ХVIII летней Олимпиады в Токио. Первые поезда развивали скорость 220-230 км/ч.

Сеть высокоскоростных линий контролируется группой компаний Japan Railways Group. JR Group является основой сети железных дорог Японии (контролирует 20135 из 27268 км дорог, что составляет ~74% всех магистралей). На ее долю приходится большая доля междугороднего и пригородного железнодорожного сообщения. Первоначально линии «Синкансэн» выполняли грузовые и пассажирские перевозки днем и ночью. Сейчас они обслуживают только пассажиров, а в период с полуночи до 6 часов утра движение останавливается для проведения ремонтно-профилактических работ. В Японии осталось совсем немного ночных поездов, и все они по-прежнему ходят по старой железной дороге, пути которой проложены параллельно путям «поезда-пули» и соединяют крупные города страны.

Сегодня в Японии используются три категории высокоскоростных поездов: «нодзоми», «хикари» и «кодама». Экспресс «нодзоми» — самый быстрый. Курсирующие на этих линиях поезда серии 500 своим внешним обликом, и особенно вытянутой носовой частью длиной 15 м, создающей необходимую аэродинамику, напоминают космические корабли. Их появление на железнодорожных магистралях Японии полностью изменило стандарты для высокоскоростных дорог. На некоторых участках «нозоми» развивает скорость до 300 км/ч и останавливается только в крупных населенных пунктах. «Хикари», второй по скорости, делает остановки и на промежуточных станциях, а «кодоми» — на всех станциях. Тем не менее, и скорость «кодоми» превышает 200 км/ч, хотя при прохождении через некоторые местности и населенные пункты скорость «Синкансэна» ограничена 110 км/ч.

3.

Несмотря на высокие скорости, «Синкансэн» в Японии зарекомендовал себя исключительно надежным видом транспорта: за годы эксплуатации, начиная с 1964 г., не зафиксировано ни одной аварии со смертельным исходом (исключая самоубийц). Также исключительно высока и «пунктуальность» японских высокоскоростных поездов: среднее ежегодное опоздание составляет менее минуты, и даже при пиковых нагрузках оно составляет не более 3-4 мин. Став удобным и доступным видом транспорта, «Синкансэн» во многих случаях является сегодня самым оптимальным способом путешествия по Японии. При этом интервал движения в утренние и вечерние часы пик составляет 5-6 минут!

4.

Сейчас скоростные поезда — это такой же символ современной Японии, как и качественная электроника, надежные и долговечные автомобили.

5.

Скоростные поезда тут намного популярнее авиаперелетов внутри страны, так как для поездки на «Синкансэн» нет необходимости тратить время на дорогу до аэропорта, проходить регистрацию и прочее. Синкансэн экономит время во всем!
6.

Эти скоростные поезда называют ещё bullet train - поезд-пуля.
7.

Немного выше я уже отметил, что эти поезда конкурируют с самолетами только экономией времени. Комфорт и цена примерно одинаковы! Да, кататься на поездах «Синкансэн» недёшево - короткая поездка может обойтись в приличную сумму . Что делать туристу?

Cамый экономичный способ путешествия по Японии - Japan Rail Pass. Такой проездной билет просто необходим самостоятельному путешественнику.

Проездной билет Japan Rail Pass дает право на неограниченное число поездок по дорогам компании JR, а также на принадлежащих ей автобусах и паромах (недействителен для проезда на супер-экспрессе "нодзоми"). Такой билет рассчитан на 7, 14 или 21 дней и его можно приобрести только за пределами Японии .

8.

JR Pass могут приобрести только иностранцы, и только до приезда в Японию. Цены на обычный JR Pass Ordinary "взрослый" JR Pass- 237,438 и 562$ на 7, 14 и 21 день соответственно. Естественно блатной JR Pass Green 1st Class будут дороже - примерно на 150$.

Так что если вы собрались много кататься по Японии, советую приобрести заранее такой проездной.

9.

10.

На платформе никто не заходит за желтую линию.
11.

12.

Поезда N700 развивают скорость до 300 км/ч, а возможность наклона позволяет сохранять скорость 270 км/ч на кривых радиусом до 2500 м, на которых ранее допускалась скорость в 255 км/ч. Другой особенностью N700 является то, что он ускоряется быстрее, чем другие поезда Синкансэн, с ускорением 0,722 м/с², что позволяет достигать скорости 270 км/ч всего за 3 минуты.
13.

Сейчас в Японии во всю проходят испытания поезда-магнитопланы . В апреле 2015 поезд маглев на магнитной подушке побил собственный рекорд скорости, разогнавшись до 603 км/ч в ходе испытаний вблизи Фудзиямы. Компания JR Central, которой принадлежат эти составы, намеревается выпустить их на маршрут Токио-Нагоя к 2027 году. Расстояние в 280 километров планируется преодолевать всего 40 минут.

14.

15.

Внутри поезда фотографий я делать не стал. Отмечу только очень комфортные сидения, персональные розетки и герметичные комнаты-капсулы для курения. Страна для людей!
16.

N700. В каждом таком поезде 16 вагонов и 1323 комфортабельных пассажирских кресла.
17.

А вот еще видео про пролет «Синкансэн» серии N700:

Если вы хотите знать все о поездах «Синкансэн», то вам к Варламову.

Японское железнодорожное чудо "Синкансен"


1 0

Ровно 50 лет назад, в октябре 1964-го года в Японии был запущен первый в мире сверхскоростной поезд “Синкансен” (aka bullet-train), способной развивать скорость до 210 км/ч и навсегда ставший одним из символом “новой” Японии и ее растущей экономической мощи. Первая линия соединила два крупнейших японских города - Токио и Осаку, сократив минимальное время путешествия между ними с 7,5 до 4 часов.

За возможность посетить разные уголки Японии выражаю огромную благодарность Представительству Национального офиса по туризму Японии во Владивостоке и авиакомпанией S7 Airlines .

Еще материалы из поездки:

Если утомленной душе путника станет совсем грустно в реалиях современного мегаполиса, всегда можно отправиться на отдых в Хаконе. Хаконе — это курортный район, который находится недалеко от Токио, в черте национального парка Фудзи-Хаконе-Идзу, между горой Фудзи и полуостровом Идзу. В хорошую погоду и при благоприятных обстоятельствах, в общем, если вам улыбнется удача, вы можете наблюдать знаменитую Фудзи-сан, — собственно за этим сюда и приезжают многие путники.

В окрестностях Хаконэ так же находится множество термальных источников - недаром этот городок неподалёку от Токио с незапамятных времен является одним из самых популярных курортов Японии. На сегодняшний день в этом регионе действует более дюжины горячих источников, питающих купели множества отелей и рёканов Хаконе. Обо всем по порядку под катом.


Наконец, наступило время написать отчеты по результатам поездки в прекрасную Японию. Первым пунктом моего путешествия, конечно же, стал огромный мегаполис и столица Японии - Токио. Под катом предлагаю посмотреть картинки про мои два дня в самом современном мегаполисе мира.


28 апреля маршрутную сеть авиакомпании S7 Airlines пополнило новое направление — прямой регулярный авиарейс связал Владивосток и японский город Осака. В числе первых пассажиров этого рейса оказался и я.

Полёты в Осаку теперь еженедельно выполняются по средам и пятницам. Из аэропорта Кневичи самолёт вылетает в 13:30, а в Осаку прилетает в 14:40 по местному времени, то есть два часа в воздухе — и вы в Японии. Обратно во Владивосток самолёт отправляется из аэропорта Осаки Кансай в 15:45, и 19:05 оказывается в пункте назначения. Полёты по новому рейсу осуществляются на лайнерах Airbus A320, оснащенных салонами эконом- и бизнес-класса. Под катом немного про аэропорт и новый рейс зеленого самолета-кузнечика авиакомпании S7.


Япония для жителей Дальнего Востока по понятным причинам всегда была одним из самых популярных зарубежных направлений для деловых и туристических поездок. В этом году из-за существенного облегчения визового режима интерес к этой стране должен значительно вырасти. Чтож пора побывать и мне.

Да, оказывается существует еще дальневосточник, который не бывал в Японии:))

--
Спасибо за внимание!
--
-Использование фотоматериала разрешается только при моем личном согласии.
-Если вы используете фотографии в некоммерческих целях не забывайте ставить активную ссылку на мой журнал.
-Все снимки, размещенные в этом журнале, моего авторства, если не написано обратное.
-Текстовое описание объектов использовано из открытых источников

Поезда на магнитной подушке - это экологический чистый, бесшумный и быстрый транспорт. Они не могут слететь с рельсов и в случае неполадки способны безопасно остановиться. Но почему же такой транспорт не получил широкого распространения, и люди по-прежнему пользуется обычными электричками и поездами?

Поезда на магнитной подушке: почему «транспорт будущего» не прижился

Вероника Елкина

В 1980-е годы считалось, что поезда с магнитной левитацией (маглевы) это транспорт будущего, который уничтожит внутренние авиарейсы. Эти поезда могут перевозить пассажиров со скоростью 800 км/ч и не наносят практически никакого вреда окружающей среде.

Маглевы способны ездить в любую погоду и не могут сойти со своего единственного рельса - чем дальше поезд отклоняется от путей, тем сильнее его толкает обратно магнитная левитация. Все маглевы двигаются с одинаковой частотой, поэтому не будет никаких неполадок с сигналами. Представьте себе, какой эффект оказали бы такие поезда на экономику и транспорт, если бы расстояние между отдаленными крупными городами преодолевалось за полчаса.

Но почему вы до сих пор не можете ездить по утрам на работу со сверхзвуковой скоростью? Концепт маглевов существует уже более века, еще с начала 1900-х было оформлено множество патентов, использующих эту технологию. Однако до наших дней дожило лишь три рабочие системы поездов на магнитной подушке, причем все они есть только в Азии.

Японский маглев. Фото: Yuriko Nakao/Reuters

До этого первый рабочий маглев появился в Великобритании: в период с 1984 по 1995 из аэропорта Бирмингема ходил шаттл AirLink . Маглев был популярным и дешевым транспортом, но его обслуживание обходилось очень дорого, поскольку некоторые запчасти были единичного производства и их было тяжело найти.

В конце 1980-х Германия тоже обратилась к этой идее: ее беспилотный поезд M-Bahn ездил между тремя станциями западного Берлина. Однако технологию левитирующих поездов решили отложить на потом, и линию закрыли. Ее производитель TransRapid проводил испытания маглевов до тех пор, пока в 2006 году на тренировочном полигоне в Латене не произошел несчастный случай, в котором погибло 23 человека.

Это происшествие могло поставить крест на немецких маглевах, если бы компания TransRapid не подписала до этого договор на строительство в 2001 году маглева для Шанхайского аэропорта. Сейчас этот маглев является самым быстрым электропоездом в мире, который ездит со скоростью 431 км/ч. С его помощью расстояние от аэропорта до бизнес-квартала Шанхая можно преодолеть всего за восемь минут. На обычном транспорте для этого понадобился бы целый час. В Китае есть еще один среднескоростной маглев (его скорость составляет около 159 км/ч), который работает в столице провинции Хунань, Чанша. Китайцы настолько полюбили эту технологию, что к 2020 году планируют запустить еще несколько маглевов в 12 городах.

Канцлер Германии Ангела Меркель первой проехала на маглеве TransRapid до Шанхайского аэропорта. Фото: Rolf Vennenbernd/EPA

В Азии сейчас ведется работа и над другими проектами поездов на магнитной подушке. Один из самых известных - это беспилотный шаттл EcoBee, который ездит от южнокорейского аэропорта Инчхон с 2012 года. На его самой короткой линии расположено семь станций, между которыми маглев проносится со скоростью 109 км/ч. А еще поездки на нем абсолютно бесплатны.


© 2024
polyester.ru - Журнал для девушек и женщин